Data Connectivity & Mainframe Inegration

Data Services Journal

Subscribe to Data Services Journal: eMailAlertsEmail Alerts newslettersWeekly Newsletters
Get Data Services Journal: homepageHomepage mobileMobile rssRSS facebookFacebook twitterTwitter linkedinLinkedIn


Data Services Authors: Scott Allen

Related Topics: Data Services Journal, Wireless Technology Magazine, Big Data on Ulitzer, Internet of Things Journal

BigData: Blog Post

IIoT + S2S = Industrial Innovation at the Access Layer | @ThingsExpo #IoT #IIoT

IIoT is moving at a rapid pace toward a higher intelligence platform to help collect, protect, transport and control data

The Industrial Internet of Things (IIoT) is moving at a rapid pace towards a higher intelligence platform to help collect, protect, transport and control data at scale from a myriad of sources. The access layer in the IT landscape is now particularly becoming an innovative technology environment with many new sensory solutions available to bring intelligence back to the core systems and analytics engines.

Another area to consider when discussing IIoT are the individuals working with these technologies today, tomorrow and in the future. To start, the younger/millennial generation is entering the workforce in droves and is arguably the first generation open to big data integration and as part of IoT application solutions. Now that IT and Operations personnel work closer together than ever before, there is a need to be able to share the sensor data across the access layer. On the other hand, the older generation is trusting of the SCADA data systems they have been using for years, and are slow at first to adapt to the new intelligence created in the access layer.

How Does an Enterprise Address this Transition?
One strategy is IT/OT convergence, which promotes a single view of an enterprise's information. Process-management tools help ensure that every person, machine, sensor, switch and device in an organization has accurate information in the best form and at the right time. As OT products-for example, programmable logic controllers (PLCs) and remote terminal units (RTUs)-become more aligned with IT infrastructure and applications, getting OT information integrated efficiently with IT systems at a process level is difficult enough for many companies. Getting IT and OT systems to work together to maximize business efficiency - while avoiding negative consequences, risks and pitfalls in the process -makes the task more challenging.

However, thanks to new technologies, this process is becoming more practical and is creating the opportunities for huge economic benefits when these two disciplines are successfully integrated.

Evolution of Sensor-2-Server (S2S)
(As described by Brandon Lewis, Technology Editor for IoT Design)

S2S architectures define a method for communicating data collected by sensor platforms at the access layer of an IoT network back to servers at other layers, including but not limited to centralized servers in the core network. This type of architecture allows sensor data to be transmitted to points in the network that are best suited to the specific type of analysis, decision making, and control, which in an industrial deployment could be a SCADA controller located at the aggregation layer rather than a mass dump of heterogeneous data from hundreds or thousands of endpoints back to the core network. For critical IoT systems that require real-time or near-real-time analysis of sensor data, this more localized communications can speed decision cycles using data in motion rather than waiting to parse data at rest.

Want to Learn More about S2S and the Future of Industrial IoT?
For more information and a full discussion on S2S and the future of IIoT, please check out this recent interview with the IoT Roadshow and Scott Allen. You can also listen to the SoundCloud recording below!

More Stories By Scott Allen

Scott is an executive leader with more than 25 years of experience in product lifecycle management, product marketing, business development, and technology deployment. He offers a unique blend of start-up aggressiveness and established company executive leadership, with expertise in product delivery, demand generation, and global market expansion. As CMO of FreeWave, Scott is responsible for product life cycle/management, GTM execution, demand generation, and brand creation/expansion strategies.

Prior to joining FreeWave, Scott held executive management positions at Fluke Networks (a Danaher Company), Network Associates (McAfee), and several start-ups including Mazu Networks and NEXVU Business Solutions. Scott earned his BA in Computer Information Systems from Weber University.